INTERROGATION DE CHIMIE 2 (Durée 1 h 30)

Toutes les données numériques figurent en fin d'énoncé.

Dans tous les cas, l'air sera supposé être composé respectivement de 80 et 20 % (en moles) de diazote et dioxygène

I.Pollution atmosphérique. (4,5 points)

Le monoxyde d'azote NO est un polluant atmosphérique.

1°) A partir de la valeur de la constante d'équilibre, calculer, à 25 °C, la fraction molaire de NO_(gaz) dans l'air (pression = 1 bar) à l'équilibre suite à la réaction :

 $N_{2(gaz)} + O_{2(gaz)} \stackrel{?}{\sim} 2 NO_{(gaz)}$

Comparer votre résultat à l'objectif recherché par l'Organisation Mondiale de la Santé (teneur en NO dans l'air inférieure à 30 μ g.m³).

2°) Quelle est l'influence d'une élévation de température sur la teneur en NO dans l'air ?

II. Oxydoréduction (3 points)

Equilibrer les réactions suivantes en précisant les nombres (ou degrés) d'oxydation des éléments oxydés et réduits.

III. Synthèse de SO₃ en phase gazeuse. (12,5 points)

La partie B est presque totalement indépendante de la partie A.

On étudie la réaction de synthèse :

$$2 \text{ SO}_{2(gaz)} + \text{O}_{2(gaz)} \rightleftharpoons 2 \text{ SO}_{3(gaz)}$$

A. Le mélange initial est constitué de 2 moles de SO₂ et de 1 mole de O₂. La pression totale est maintenue constante et égale à 1 bar. On obtient à l'équilibre à 800K, un rendement de 0,890.

- 1°) Déterminer dans ces conditions la variance de cet équilibre.
- 2°) Calculer la valeur de la constante d'équilibre K₈₀₀ pour la réaction considérée.
- 3°) Quelle est l'incertitude sur K_{800}^0 si le rendement est déterminé à \pm 0,005 près.? Quelle est l'influence sur la valeur de K_{800}^0 d'une erreur par excès sur le rendement ?
- l'influence sur la valeur de K_{800}^0 d'une erreur par excès sur le rendement ? 4°) Quelle incertitude sur K_{800}^0 provoque une incertitude de 1 % sur la pression ?

- B. Pour la réaction $2 \text{ SO}_{\chi gaz}$ + $O_{Z(gaz)}$ \rightleftharpoons $2 \text{ SO}_{3(gaz)}$ on trouve dans la littérature la relation (1) ln $K_T^0 = \frac{23000}{T}$ 21,60 (T en K) pour les températures de l'ordre de 800 K.
- 1°) Quelle est l'incertitude sur la valeur de K_{800}^0 calculée à partir de cette relation, si l'incertitude sur la température est de 2 K? Les incertitudes expérimentales ayant les valeurs données précédemment, la valeur de K_{800}^0 obtenue dans la partie A est-elle compatible avec cette dernière?

Dans la suite de l'exercice, la relation(1) sera prise comme référence.

- 2°) Après avoir déterminé le signe de l'enthalpie de la réaction de synthèse de SO₃, et en précisant les hypothèses utilisées, calculer à 298 K, l'enthalpie standard de formation et l'entropie standard de SO_{3(gaz)}
- 3°) Un mélange constitué initialement de 2 moles de SO₂, 1 mole de O₂ et 1 mole de SO₃ est porté à 800 K sous la pression constante de 1 bar. Dans quel sens va évoluer ce système pour atteindre l'équilibre (sens de synthèse ou de décomposition de SO₃)? Justifier.
- 4°) Un mélange initial de SO_2 et O_2 conduit à l'équilibre à une température T' et sous une pression totale de 0,1 bar à un système constitué de 3 moles de SO_2 , 1 mole de O_2 et 1 mole de SO_3 .
 - a) Déterminer T'.
 - b) Déterminer la composition initiale du mélange.
 - c) Quel est le rendement de la réaction de synthèse à l'équilibre ?
- d) Quelle quantité de SO₂ faut-il ajouter pour obtenir un rendement de synthèse égal à 0,500 ?
- 5°) La synthèse est ensuite effectuée dans les mêmes conditions de stoechiométrie, de température et de pression qu'au A, mais en utilisant de l'air au lieu du dioxygène pur.
 - a) Comment, selon vous, varie le rendement à l'équilibre ?
- b) Sous quelle pression, à 800 K, faudrait-il travailler dans ce cas pour obtenir un rendement de 0,890 ? Ce résultat confirme-t-il votre réponse au B 5°) a)? Justifier.

Données:

 $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$

 $T_0 = 273 \text{ K}$

 $1 \text{ bar} = 10^5 \text{ Pa}$

Masses molaires : $N = 14 \text{ g.mol}^{-1}$

 $O = 16 \text{ g.mol}^{-1}$

	Etat	$\Delta_J H_{298}^0$ (kJ.mol ¹)	S ₂₉₈ (J.K ⁻¹ .mol ⁻¹)
NO	gazeux	90,2	210,7
N ₂	gazeux		191,6
O ₂	gazeux		205,1
SO ₂	gazeux	- 296,8	248,2

Interrogation de Chimie 2 du 21 décembre 2006

1°) $\Delta_r H_{298}^0 = 180,4 \text{ k J.mol}^{-1}$ $\Delta_r S_{298}^0 = 24,7 \text{ J.K}^{-1} \text{mol}^{-1}$ $\Delta_{r}G_{\infty s}^{0} = 173039 \text{ J.mo}\Gamma^{1}$ $\Rightarrow K = 4,665.10^{\circ}$

	N ₂	O ₂	NO	Total
E initial	0,8	0,2	0	1
Equilibre	0,8-x	0,2-x	2 <i>x</i>	1

2x =nb de mol de NO formées à partir d'une mole d'air

$$K_{298}^{0} = \frac{4x^{2}P^{2}}{(0.8 - x)(0.2 - x)P^{2}} = \frac{4x^{2}}{(0.8 - x)(0.2 - x)} = 4,665.10^{-31}$$

$$(0.8 - x)(0.2 - x)P - (0.8 - x)(0.2 - x)$$

$$(0.8 - x)(0.2 - x) < 1 \Rightarrow 4x^2 < 4.665.10^{-31} \Rightarrow x^2 < \frac{46.65.10^{-32}}{4} \Rightarrow x < 3.4.10^{-16}$$

$$\Rightarrow \frac{4x^2}{0.16} \approx 4,665.10^{-31} \Rightarrow x = 1,366.10^{-16} \Rightarrow \text{fraction molaire NO} = 2,73.10^{-16}$$
PV 2.73.10⁻¹⁶ 10⁵

0,16 $P = 2,73.10^{-16} \text{bar} \Rightarrow n = \frac{PV}{RT} = \frac{2,73.10^{-16}.10^5}{8,314.298} = 1,1.10^{-14} \text{ mol de NO/m}^3$ $M(NO) = 30 \Rightarrow 30 \mu \text{g/m}^3 = 10^{-6} \text{ mol/m}^3 >> 1,11.10^{-14} \text{ ou autre methode}$ objectif pas irréaliste mais nécessité pour l'homme de limiter la production de NO

2°) Δ,H>0 ⇒ élévation de la T favorise la réaction endo donc la synthèse de NO

11. Oxydoréduction

III. SO₂-SO₃

	SO ₂	O ₂	SO ₃	Total
E initial	2	1	0	3
t(Equilibre	2(1-r)	1-r	2r	3 - r

$$\begin{split} K_{800}^{0} &= \frac{1}{P_{8600}^{-5}} \frac{1}{P_{800}^{-5}} \frac{-1}{(1-r)^{4}(1-r)^{2}p} = \frac{(1-r)^{4}}{(1-r)^{2}p} = \frac{0.332.11}{0.11^{3}.1} = 1256 \\ &3^{9}) \ln K = 2 \ln r + \ln(3-r) - 3 \ln(1-x) - \ln P \\ \frac{dK}{K} &= \frac{2 dr}{3 r} - \frac{dr}{3 r} + \frac{3 dr}{1-r} = dr(\frac{2}{r} - \frac{1}{3 - r} + \frac{3}{1-r}) = dr(\frac{2}{0.89} - \frac{1}{2.11} + \frac{3}{0.11}) = 29 \ dr = 0.145 \\ \Delta K_{800}^{0} &= 0.145K = 182 \qquad K_{800}^{0} = 1256 \pm 182 \\ D'après \ dK/K = 29 \ dr, \ sir \ par \ excès, \ K \ est \ majoré \end{split}$$

Soit x le nb de mol de SO₂ ajouté.

	SO ₂	O_2	SO ₃	Total
Nouvel état initial	4+x	1,5	0	4,5
ou	3+x	1	1 1	200
E équilibre	2,5+x	0,75	1,5	4,75+x
5 (1.5	12(1 75 ± v)			

 $K_T^0 = \frac{5}{0.9} = \frac{(1.5)^2 (4.75 + x)}{0.75 (2.5 + x)^2 0.1} \Rightarrow 3.75 x^2 - 1.5 x - 72.75 = 0 \Rightarrow x = 4.61$

a) La pression des réactants est donc diminuée par rapport au cas de A, donc l'équilibre sera déplacé vers la réaction augmentant la P des réactants, donc sens 2 (dissociation de SO₃)

SO₃ E initial 2(1-x)

$$\begin{aligned} &1274 = K_{geo}^0 = \frac{P_{sepatSOS}^2}{P_{sepatSOS}^2} \frac{x^2(7-x)}{(1-x)P} = \frac{0.89^2(7-0.89)}{(1-0.89^2)P} \Rightarrow P = 2.85 \text{ bar} \\ &Accord & car en augmentant P totale on augmente les P1 des réactants et la réaction de synthèse$$

4°)
$$\frac{dK}{K} = -\frac{dP}{P}$$
 $\frac{\Delta K}{K} = 1\%$ $\Delta K = 12,6$

B) 1°)
$$\ln K_{\text{Bio}}^{\circ} = \frac{23000}{T} - 21,60 \Rightarrow K = 1274$$

$$\frac{dK}{K} = -\frac{23000}{T} \frac{dT}{T} \Rightarrow \Delta K = \frac{23000 \text{ K} \Delta T}{T} = 91,6 = 92 \Rightarrow K = 1274 \pm 92$$

Donc valeur compatible.⁴⁰

$$\begin{array}{l} 2^o) \\ \ln K_T^o = \frac{-\Delta_t H_T^o}{RT} + \frac{\Delta_t S_t^c}{R} = \frac{23000}{T} - 21,60 \\ \Rightarrow \Delta_t H \leq 0 \text{ et } \Delta_t H = -191.2 \text{ kJ.mol}^- \\ \Rightarrow \Delta_t H_{2m}^c(SO_t) = -392,4 \text{ kJ.mol}^- \\ \Delta_t S_{2m}^o = -21,6.8,314 = -179,61,K^-.mol}^- \Rightarrow S_{2m}^o(SO_3) = 261 \text{ J.K.}^-.mol}^- \\ \text{Hypothèse: influence des Cp négligeable surAH et ΔS quand la température varie.}$$

$$\Delta_{\tau}G_{\tau}^{p} = \Delta_{\tau}G_{\tau}^{0} + R \text{ Tln}Q = -RT \text{ In } \frac{K_{T}^{0}}{Q} = RT \text{In } \frac{Q}{K_{T}^{0}}$$

$$Q = \frac{\left(\frac{1}{4}\right)^2}{\left(\frac{1}{2}\right)^2\left(\frac{1}{4}\right)p} = \frac{1}{1} = 1 < K = 1274 \Rightarrow \Delta_r G_\tau^p < 0 \Rightarrow \text{sons synthèse}$$

	SO ₂	O ₂	SO ₃	Total
E équilibre	3	1	1	5
E initial	3+1	1÷0,5	0	5,5

$$\ln K_{T}^{0} = \frac{23000}{T} - 21,60 = \ln \frac{\left(\frac{1}{5}\right)^{2}}{\left(\frac{3}{5}\right)^{2}\left(\frac{1}{5}\right)p} = \ln \frac{5}{0.9} \Rightarrow T = 986,5 \text{ K}$$

- b) Initialement : 4 mol de SO2 et 1,5 mol de O2.
- c) C'est par rapport au réactif déficitaire que le rendement est calculé, donc par rapport à O2. Le rendement est donc égal à 1/3.
- d) L'ajout de SO₂ augmentera encore le déficit en O₂. Le rendement sera donc toujours calculé par rapport à O2.