INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON CENTRE DE MATHEMATIQUES

Département du premier cycle Cours de Mathématiques - Deuxième Année Groupe 52

2004-2005

Interrogation écrite III

Avertissement : les documents et calculatrices sont interdits. Durée 1h. Les exercices peuvent être traités dans un ordre quelconque. Le barème est donné à titre indicatif.

La présentation, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie.

EXERCICE 1 (6 points)

On considère l'espace vectoriel réel $E = \{ f \in \mathcal{C}^1([0,1],\mathbb{R}) \mid f(0) = 0 \}$ des applications de [0,1] dans \mathbb{R} de classe \mathcal{C}^1 s'annulant en 0. On rappelle que $(\mathcal{C}^0([0,1],\mathbb{R}), \| \|_{\infty})$ est complet.

- $1 \text{ Montrer que l'application } N: f \in E \longmapsto \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)| \text{ est une norme sur } E.$
- 2 a) Montrer que si $(f_n)_n$ est une suite de Cauchy dans (E, N), elle converge dans $(\mathcal{C}^0([0, 1], \mathbb{R}), \| \|_{\infty})$.
 - b) Montrer que (E, N) est un espace vectoriel normé complet.

EXERCICE 2

Exercice 2 (4 points) Soient $f \in \mathcal{C}^0([0,1], \mathbb{R})$ et $k \in \mathcal{C}^0([0,1]^2, \mathbb{R})$ telle que $\sup_{(x,y)\in[0,1]^2} |k(x,y)| = \frac{1}{2}$. On considère l'application $\phi:g\in\mathcal{C}^0([0,1],\mathbb{R})\longmapsto\phi(g)\in\mathcal{C}^0([0,1],\mathbb{R})$ où $\phi(g)$ est définie par

$$\forall x \in [0,1] \quad \phi(g)(x) = f(x) + \int_0^1 k(x,y) \ g(y) \ dy.$$

En utilisant le théorème du point fixe (que l'on énoncera précisément), montrer qu'il existe une unique application $g \in \mathcal{C}^0([0,1],\mathbb{R})$ solution de l'équation de Volterra : $\forall x \in [0,1]$ $g(x) = f(x) + \int_0^1 k(x,y) \ g(y) \ dy$.

EXERCICE 3 (6 points)

Soient a_0, \ldots, a_n où $n \in \mathbb{N}$ des réels deux à deux distincts. On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n. On considère l'application :

$$\psi: (P,Q) \in \mathbb{R}_n[X] \times \mathbb{R}_n[X] \longmapsto \sum_{k=0}^n P(a_k) \times Q(a_k).$$

- 1 Montrer que $(\mathbb{R}_n[X], \psi)$ est un espace euclidien.
- 2 On considère les polynômes de Lagrange (L_0,\ldots,L_n) associés aux réels a_0,\ldots,a_n :

$$\forall i \in \{0,\ldots,n\}$$
 $L_i = \alpha_i \prod_{\substack{j=0 \ j \neq i}}^n (X - a_j)$ avec $\alpha_i = 1 / \prod_{\substack{j=0 \ j \neq i}}^n (a_i - a_j).$

Montrer que (L_0, \ldots, L_n) constitue une base orthonormée de $\mathbb{R}_n[X]$ pour le produit scalaire ψ .

EXERCICE 4 (4 points)

Soient (E, <.,.>) un espace euclidien de dimension $n \in \mathbb{N}^*$ et $(v_1, ..., v_p) \in E^p(p \in \mathbb{N}^*)$. On suppose les vecteurs v_1, \ldots, v_p linéairement indépendants. Soit ϕ l'application de \mathbb{R}^p dans \mathbb{R} définie par

$$\phi(x) = \left\| \sum_{k=1}^{p} x_k v_k \right\|^2 \quad \forall x = (x_1, \dots, x_p) \in \mathbb{R}^p,$$

où ||.|| désigne la norme associée au produit scalaire < .,. >.

- 1 Montrer que ϕ est une forme quadratique sur \mathbb{R}^p dont on donnera la forme polaire associée.
- 2 Déterminer le noyau de ϕ puis le rang de ϕ . Quelle est sa signature?
- 3^* Que peut-on dire si on ne suppose plus les vecteurs v_1, \ldots, v_p linéairement indépendants?

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON CENTRE DE MATHEMATIQUES

Département du premier cycle Cours de Mathématiques - Deuxième Année Groupe 52

2004-2005

Interrogation écrite III

Avertissement : les documents et calculatrices sont interdits. Durée 1h. Les exercices peuvent être traités dans un ordre quelconque. Le barème est donné à titre indicatif.

La présentation, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie.

EXERCICE 1 (6 points)

On considère l'espace vectoriel réel $E = \{ f \in \mathcal{C}^1([0,1],\mathbb{R}) \mid f(0) = 0 \}$ des applications de [0,1] dans \mathbb{R} de classe \mathcal{C}^1 s'annulant en 0. On rappelle que $(\mathcal{C}^0([0,1],\mathbb{R}), \| \|_{\infty})$ est complet.

- $1 \text{ Montrer que l'application } N: f \in E \longmapsto \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)| \text{ est une norme sur } E.$
- 2 a) Montrer que si $(f_n)_n$ est une suite de Cauchy dans (E, N), elle converge dans $(\mathcal{C}^0([0, 1], \mathbb{R}), \| \|_{\infty})$.
 - b) Montrer que (E, N) est un espace vectoriel normé complet.

EXERCICE 2

Exercice 2 (4 points) Soient $f \in \mathcal{C}^0([0,1], \mathbb{R})$ et $k \in \mathcal{C}^0([0,1]^2, \mathbb{R})$ telle que $\sup_{(x,y)\in[0,1]^2} |k(x,y)| = \frac{1}{2}$. On considère l'application $\phi:g\in\mathcal{C}^0([0,1],\mathbb{R})\longmapsto\phi(g)\in\mathcal{C}^0([0,1],\mathbb{R})$ où $\phi(g)$ est définie par

$$\forall x \in [0,1] \quad \phi(g)(x) = f(x) + \int_0^1 k(x,y) \ g(y) \ dy.$$

En utilisant le théorème du point fixe (que l'on énoncera précisément), montrer qu'il existe une unique application $g \in \mathcal{C}^0([0,1],\mathbb{R})$ solution de l'équation de Volterra : $\forall x \in [0,1]$ $g(x) = f(x) + \int_0^1 k(x,y) \ g(y) \ dy$.

EXERCICE 3 (6 points)

Soient a_0, \ldots, a_n où $n \in \mathbb{N}$ des réels deux à deux distincts. On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n. On considère l'application :

$$\psi: (P,Q) \in \mathbb{R}_n[X] \times \mathbb{R}_n[X] \longmapsto \sum_{k=0}^n P(a_k) \times Q(a_k).$$

- 1 Montrer que $(\mathbb{R}_n[X], \psi)$ est un espace euclidien.
- 2 On considère les polynômes de Lagrange (L_0,\ldots,L_n) associés aux réels a_0,\ldots,a_n :

$$\forall i \in \{0,\ldots,n\}$$
 $L_i = \alpha_i \prod_{\substack{j=0 \ j \neq i}}^n (X - a_j)$ avec $\alpha_i = 1 / \prod_{\substack{j=0 \ j \neq i}}^n (a_i - a_j).$

Montrer que (L_0, \ldots, L_n) constitue une base orthonormée de $\mathbb{R}_n[X]$ pour le produit scalaire ψ .

EXERCICE 4 (4 points)

Soient (E, <.,.>) un espace euclidien de dimension $n \in \mathbb{N}^*$ et $(v_1, ..., v_p) \in E^p(p \in \mathbb{N}^*)$. On suppose les vecteurs v_1, \ldots, v_p linéairement indépendants. Soit ϕ l'application de \mathbb{R}^p dans \mathbb{R} définie par

$$\phi(x) = \left\| \sum_{k=1}^{p} x_k v_k \right\|^2 \quad \forall x = (x_1, \dots, x_p) \in \mathbb{R}^p,$$

où ||.|| désigne la norme associée au produit scalaire < .,. >.

- 1 Montrer que ϕ est une forme quadratique sur \mathbb{R}^p dont on donnera la forme polaire associée.
- 2 Déterminer le noyau de ϕ puis le rang de ϕ . Quelle est sa signature?
- 3^* Que peut-on dire si on ne suppose plus les vecteurs v_1, \ldots, v_p linéairement indépendants?

SOLUTION DES EXERCICES

Rédigé par : Stéphane Balac, Centre de Mathématiques, INSA de Lyon.

Solution de l'exercice 1

- 1 On a $N(f) = ||f||_{\infty} + ||f'||_{\infty}$ pour tout $f \in E$.
- a) On en déduit que pour tout $f \in E$ on a $N(f) \ge 0$ et que si N(f) = 0 alors $||f||_{\infty} = 0$ et $||f'||_{\infty} = 0$. Comme $|| ||_{\infty}$ est une norme sur $C^1([0,1],\mathbb{R})$, il en résulte que f = 0.
 - b) De plus le fait que $\| \|_{\infty}$ est une norme implique que pour tout $(f,g) \in E^2$ et pour tout $\lambda \in \mathbb{R}$,

$$N(\lambda f) = \|\lambda f\|_{\infty} + \|(\lambda f)'\|_{\infty} = |\lambda| \|f\|_{\infty} + |\lambda| \|f'\|_{\infty} = |\lambda| N(f);$$

$$N(f+g) = \|f+g\|_{\infty} + \|(f+g)'\|_{\infty} = \|f+g\|_{\infty} + \|f'+g'\|_{\infty}$$

$$\leq \|f\|_{\infty} + \|g\|_{\infty} + \|f'\|_{\infty} + \|g'\|_{\infty} = N(f) + N(g).$$

2 - a) Considérons une suite de Cauchy $(f_n)_n$ dans (E,N), i.e. vérifiant :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*} \quad \exists N \in \mathbb{N} \quad \forall (m, n) \in \mathbb{N}^{2} \quad (m \ge n \ge N \Longrightarrow N(f_{n} - f_{m}) \le \varepsilon). \tag{1}$$

D'après l'assertion (1) on a :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*} \quad \exists N \in \mathbb{N} \quad \forall (m, n) \in \mathbb{N}^{2} \quad \left(m \ge n \ge N \Longrightarrow \sup_{x \in [0, 1]} |f_{n}(x) - f_{m}(x)| \le \varepsilon\right)$$
 (2)

et

$$\forall \varepsilon \in \mathbb{R}_{+}^{*} \quad \exists N \in \mathbb{N} \quad \forall (m, n) \in \mathbb{N}^{2} \quad \left(m \ge n \ge N \Longrightarrow \sup_{x \in [0, 1]} |f'_{n}(x) - f'_{m}(x)| \le \varepsilon\right). \tag{3}$$

On déduit de l'assertion (2) que la suite $(f_n)_n$ est une suite de Cauchy dans $(\mathcal{C}^0([0,1],\mathbb{R}), \| \|_{\infty})$ qui est complet donc que la suite $(f_n)_n$ converge vers un élément $f \in \mathcal{C}^0([0,1],\mathbb{R})$ pour la norme $\| \|_{\infty}$.

b) On déduit par ailleurs de l'assertion (3) que la suite $(f'_n)_n$ est une suite de Cauchy dans $(\mathcal{C}^0([0,1],\mathbb{R}), \| \|_{\infty})$ qui est complet donc que la suite $(f'_n)_n$ converge vers un élément $g \in \mathcal{C}^0([0,1],\mathbb{R})$ pour la norme $\| \|_{\infty}$. Pour montrer que (E, N) est un espace vectoriel normé complet, il suffit de vérifier que f' = g et que f(0) = 0. La suite $(f_n)_n$ converge uniformément vers f sur [0,1], donc en particulier la suite converge simplement en 0 vers f(0). Or pour tout entier n on a $f_n(0) = 0$ donc on a bien f(0) = 0.

Les fonctions f_n sont de classe \mathcal{C}^1 sur [0,1], la suite $(f_n)_n$ converge simplement en 0 et la suite $(f'_n)_n$ converge uniformément sur [0,1]. Il résulte du théorème « de dérivation d'une suite de fonction » que la fonction f est de classe \mathcal{C}^1 sur [0,1] et que g=f'.

Solution de l'exercice 2

Le théorème du point fixe de Picard indique que si ϕ est une application contractante d'un espace vectoriel normé complet $(E, \| \|)$ dans lui même, alors elle possède un unique point fixe. De plus la suite définie par récurrence par : $u_0 \in E$ et pour tout entier n par $u_{n+1} = \phi(u_n)$ converge vers ce point fixe.

Considérons $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\| \|_{\infty}$. $(\mathcal{C}^0([0,1],\mathbb{R}),\| \|_{\infty})$ est un espace vectoriel normé complet. Montrons que ϕ est une application contractante : soient $g_1, g_2 \in \mathcal{C}^0([0,1],\mathbb{R})$,

$$\begin{split} \|\phi(g_1) - \phi(g_2)\|_{\infty} &= \sup_{x \in [0,1]} |\phi(g_1)(x) - \phi(g_2)(x)| \\ &= \sup_{x \in [0,1]} \left| \int_0^1 k(x,y) \ g_1(y) \ \mathrm{d} \, y - \int_0^1 k(x,y) \ g_2(y) \ \mathrm{d} \, y \right| \\ &= \sup_{x \in [0,1]} \left| \int_0^1 k(x,y) \ (g_1(y) - g_2(y)) \ \mathrm{d} \, y \right|. \end{split}$$

Or,

$$\begin{split} \left| \int_{0}^{1} k(x,y) \; \left(g_{1}(y) - g_{2}(x) \right) \; \mathrm{d} \, y \right| & \leq \; \int_{0}^{1} \left| k(x,y) \right| \; \left| g_{1}(y) - g_{2}(y) \right) \right| \; \mathrm{d} \, y \\ & \leq \; \int_{0}^{1} \sup_{(x',y') \in [0,1]^{2}} \left| k(x',y') \right| \; \sup_{y' \in [0,1]} \left| g_{1}(y') - g_{2}(y') \right) \right| \; \mathrm{d} \, y \\ & = \; \sup_{(x',y') \in [0,1]^{2}} \left| k(x',y') \right| \; \sup_{y' \in [0,1]} \left| g_{1}(y') - g_{2}(y') \right| \\ & = \; \frac{1}{2} \| g_{1} - g_{2} \|_{\infty}. \end{split}$$

On en déduit que ϕ est contractante de rapport 1/2.

REMARQUE. L'espace $C^0([0,1],\mathbb{R})$ muni de la norme $\| \|_2$ n'est pas complet. Il est donc indispensable de choisir la norme $\| \|_{\infty}$ pour établir la contractance de ϕ .

Solution de l'exercice 3

1 - Rappelons que $\mathbb{R}_n[X]$ est un espace vectoriel de dimension n+1 (cours de première année). C'est en effet un sous-espace vectoriel de $\mathbb{R}[X]$: le polynôme nul appartient à $\mathbb{R}_n[X]$ et si $P = \sum_{k=0}^n p_i X^i$ et $Q = \sum_{k=0}^n q_i X^i$ désignent deux polynômes de degré inférieur à n et λ, μ deux réels, le polynôme

$$\lambda P + \mu Q = \sum_{k=0}^{n} (\lambda p_i + \mu q_i) X^i$$

est de degré inférieur à n (éventuellement strictement!). La seule chose à vérifier est que ψ définit un produit scalaire.

Il est clair que ψ est symétrique $\psi(P,Q) = \psi(Q,P)$ pour tous $P,Q \in \mathbb{R}_n[X]$. Elle est linéaire par rapport à la première variable : soient λ_1, λ_2 deux réels et P_1, P_2, Q trois polynômes de $\mathbb{R}_n[X]$, on a

$$\psi(\lambda_1 P_1 + \lambda_2 P_2, Q) = \sum_{k=0}^{n} (\lambda_1 P_1(a_k) + \lambda_2 P_2(a_k)) \times Q(a_k)
= \lambda_1 \sum_{k=0}^{n} P_1(a_k) \times Q(a_k) + \lambda_2 \sum_{k=0}^{n} P_2(a_k) \times Q(a_k)
= \lambda_1 \psi(P_1, Q) + \lambda_2 \psi(P_2, Q).$$

 ψ est donc une forme bilinéaire symétrique; elle est définie positive puisque pour tout $P \in \mathbb{R}_n[X]$ on a

$$\psi(P, P) = \sum_{k=0}^{n} P(a_k) \times P(a_k) = \sum_{k=0}^{n} P(a_k)^2 \ge 0,$$

et on a $\psi(P,P)=0$ si et seulement si $\sum_{k=0}^n P(a_k)^2=0$. Il s'agit d'une somme de carrés, donc $\psi(P,P)=0$ si et seulement si $P(a_k)=0$ pour tout $k\in\{0,\ldots,n\}$. Comme P est un polynôme de degré n et que les réels a_0,\ldots,a_n sont deux à deux distincts, ceci implique que P admet n+1 racines. Un polynôme de degré n non nul admettant au plus n racines réelles, on en déduit que P est le polynôme nul.

2 - Les polynômes de Lagrange (L_0, \ldots, L_n) constituent une base de $\mathbb{R}_n[X]$ (voir le cours de première année). Pour le vérifier, il suffit d'établir que le système est libre car

$$\dim(L_0,\ldots,L_n)=\dim(\mathbb{R}_n[X])=n+1.$$

Soient $\lambda_1, \ldots, \lambda_n$ des réels tels que $\sum_{k=0}^n \lambda_k L_k = 0$ (i.e. le polynôme nul). On a en particulier pour tout $i \in \{0, \ldots, n\}$ $\sum_{k=0}^n \lambda_k L_k(a_i) = 0$ (i.e. le réel nul). Il est évident d'après la définition des polynômes de Lagrange que $L_k(a_i) = 1$ si k = i et 0 sinon, de sorte que

$$\sum_{k=0}^n \lambda_k L_k(a_i) = \lambda_i \quad orall i \in \{0,\dots,n\}.$$

On en déduit que $\lambda_i = 0$ pour tout $i \in \{0, ..., n\}$ et que le système est bien libre. Pour montrer que cette base est orthonormée, il reste à vérifier que

$$\psi(L_i, L_j) = 0 \quad \forall (i, j) \in \{0, \dots, n\}^2 \quad i \neq j$$

et

$$\psi(L_i, L_i) = 1 \quad \forall i \in \{0, \dots, n\}.$$

Soit $(i, j) \in \{0, \dots, n\}^2$; on a

$$\psi(L_i, L_j) = \sum_{k=0}^n L_i(a_k) \times L_j(a_k) = \sum_{k=0}^n \delta_{ik} \times \delta_{jk}$$

où pour $(\ell, p) \in \mathbb{N}^2$ on a $\delta_{\ell p} = 1$ si $\ell = p$ et 0 sinon. Sous l'hypothèse $i \neq j$, les entiers i, j, k ne peuvent être simultanément égaux de sorte que pour tout $k \in \{0, \ldots, n\}$ on a $\delta_{ik} \times \delta_{jk} = 0$. Par ailleurs, pour tout $i \in \{0, \ldots, n\}$ on a

$$\psi(L_i, L_i) = \sum_{k=0}^n L_i(a_k)^2 = \sum_{k=0}^n \delta_{ik} = 1.$$

Solution de l'exercice 4

1 - Notons $f: x \in \mathbb{R}^p \longmapsto \sum_{k=1}^p x_k v_k$. Il est clair que f est une application linéaire de \mathbb{R}^p dans E. Comme $\|.\|$ désigne la norme associée au produit scalaire <.,.>, pour tout $x \in \mathbb{R}^p$ on a :

$$\phi(x) = \left\langle \sum_{k=1}^{p} x_k v_k, \sum_{k=1}^{p} x_k v_k \right\rangle = \langle f(x), f(x) \rangle.$$

L'application ϕ est une forme quadratique sur \mathbb{R}^p si l'application $\psi: \mathbb{R}^p \times \mathbb{R}^p \longrightarrow \mathbb{R}$ définie par

$$\psi(x,y) = \frac{1}{4} (\phi(x+y) - \phi(x-y)) \qquad \forall (x,y) \in \mathbb{R}^p \times \mathbb{R}^p$$

est une forme bilinéaire symétrique. Pour $(x,y) \in \mathbb{R}^p \times \mathbb{R}^p$ on a

$$\begin{aligned} 4\psi(x,y) &= \phi(x+y) - \phi(x-y) \\ &= \langle f(x+y), f(x+y) \rangle - \langle f(x-y), f(x-y) \rangle \\ &= \langle f(x) + f(y), f(x) + f(y) \rangle - \langle f(x) - f(y), f(x) - f(y) \rangle \\ &= \langle f(x), f(x) \rangle + 2 \langle f(x), f(y) \rangle + \langle f(y), f(y) \rangle \\ &- (\langle f(x), f(x) \rangle - 2 \langle f(x), f(y) \rangle + \langle f(y), f(y) \rangle) \\ &= 4 \langle f(x), f(y) \rangle. \end{aligned}$$

On en déduit que $\psi: (x,y)\mathbb{R}^p \times \mathbb{R}^p \longrightarrow \langle f(x), f(y) \rangle$. Comme f est une application linéaire et que $\langle .,. \rangle$ est un produit scalaire, il est immédiat que ϕ est une forme bilinéaire symétrique.

Remarque. L'introduction de l'application linéaire f a pour seul objectif de simplifier l'écriture de la forme quadratique et de faciliter les calculs.

2 - On a

$$\mathcal{N}(\phi) = \{x \in \mathbb{R}^p : \forall y \in \mathbb{R}^p \ \psi(x, y) = 0\} = \{x \in \mathbb{R}^p : \phi(x) = 0\}.$$

Si $x \in \mathcal{N}(\phi)$ alors $||f(x)||^2 = \langle f(x), f(x) \rangle = 0$ donc f(x) = 0 car on a une norme. On en déduit que $x \in \ker(f)$. Comme il est évident que si $x \in \ker(f)$ alors $x \in \mathcal{N}(\phi)$, on en déduit que $\mathcal{N}(\phi) = \ker(f)$. Comme les vecteurs v_1, \ldots, v_p sont linéairement indépendants, on a

$$f(x) = \sum_{k=1}^{p} x_k v_k = 0 \implies (\forall k \in \{1, \dots, p\} \ x_k = 0).$$

On en déduit que $\mathcal{N}(\phi) = \ker(f) = \{0\}$. La forme quadratique ϕ est non dégénérée et de rang

$$\operatorname{rang}(\phi) = \dim(\mathbb{R}^p) - \dim(\mathcal{N}(\phi)) = p.$$

La forme quadratique ϕ est clairement positive : $\forall x \in \mathbb{R}^p \ \phi(x) = ||f(x)||^2 \ge 0$. Sa signature est donc (p,0). 3 - Si les vecteurs v_1, \ldots, v_p ne sont plus linéairement indépendants, on a d'après le théorème du rang :

$$\operatorname{rang}(\phi) = \dim(\mathbb{R}^p) - \dim(\mathcal{N}(\phi)) = p - \dim(\ker(f)) = \operatorname{rang}(f) = \operatorname{rang}(v_1, \dots, v_p).$$

La signature de la forme quadratique ϕ est alors (r,0) où $r = \operatorname{rang}(\phi)$.